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ABSTRACT

About seven years ago, the first author was invited to attend a meeting held by the “South Water Resources

Bureau” to discuss the problem about cleaning sediments of the Jsen-Weng Reservoir located at Tainan, Taiwan. At that

time, a suggestion to replace “the conventional sluice gate near free water surface” by “the siphon with its inlet near

reservoir bottom” (cf. Figure. A1 in Appendix) was presented and approved by all the attendees. Five years later, about

two years ago, the first author was invited again to attend a meeting to review the report for a project about the

construction of a tunnel for cleaning sediments of the Jsen-Weng Reservoir. The key point is to review the design of a

“S-type water-conveying steel pipe” (or simply called “S-pipe”) with its outlet connecting with an 1.2 km tunnel passing

through a mountain. The pipe diameter is 10m with maximum draft at its outlet to be 35h m, so that the S-pipe will be

subjected to the impulses 5384 RL FF tons at its inlet and outlet, as well as the resultant centrifugal forces

3760
~~

21  cc FF tons at its two curved parts. Because of being non-collinear, each pair of impulses or centrifugal forces

will induce an unbalanced “couple” with total magnitude 216727totalC m-ton, furthermore, its vibration due to

pulsating fluid flow may lead to the liquefaction of soil contacting with it. Since the above-mentioned problems are

neglected in the reviewed report, the first objective of this paper is to use the finite element method (FEM) for studying the

quasi-static deflections of some points on the S-pipe due to actions of the “constant” impulses at its inlet and outlet as well

as the centrifugal forces at the two curved parts when the flowing velocity becomes a “constant” (e.g., 25.24V m/s)

from the initial static condition (with 0V ). The next objective is to study the dynamic responses of the S-pipe due to

“pulsating” flow with velocity )cos1()( 0 tVtV e , where 0V is average velocity, t is time,  is pulsating parameter

and e is pulsating frequency. Numerical results reveal that the S-pipe will be safe if it is subjected to the “constant”

impulses and centrifugal forces, however, its safety may be questionable if it is subjected to “pulsating” flow. It is believed

that the original conception shown in the Appendix of this paper should be a better choice.
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INTRODUTION

The studies on the dynamic problem of fluid-conveying pipes are more than 50 years (Ashley and Haviland, 1950;

Housner, 1952; Long, 1955; Hsu, 1963), thus, the literature concerned is plenty. Since Ibrahim (2010, 2011) has reviewed

several hundred references regarding pipes conveying fluids, only some pertinent articles are mentioned in this paper.

For the bending vibrations of a fluid-conveying uniform pipe and that of a uniform beam, one of the main differences is

that the former has the Coriolis force and the latter does not have. For this reason, even if the inner and outer dampings are

equal to zero, the rth eigenvalue of a fluid-conveying pipe takes the form of complex number r IrRr j ,,   ,

where Rr , and Ir , denote the real part and imaginary part of r , respectively, and 1j . Through theoretical

analysis and model tests, Benjamin (1961a, 1961b) proved that the articulated fluid-conveying pipe has two types of

instabilities, buckling and fluttering. The buckling instability appears when 0, Rr and 0, Ir , while the fluttering

instability occurs if 0, Rr and 0, Ir . The last conclusion is the basis for the instability problem of fluid-conveying

pipes. After Benjamin (1961a, 1961b), Gregory and Paidoussis (1966a, 1966b) studied the free vibration characteristics of

a cantilevered fluid-conveying pipe and presented a “universal” stability curve. Since, for each curve, the “abscissa” is the

dimensionless mass ratio )(*
pfff mmmm  and the “ordinate” is the dimensionless critical velocity

)(* EImLVV fcrcr  , the above-mentioned “universal” stability curve is available for the uniform fluid-conveying pipes

with various pipe dimensions and material constants. However, the last statement is correct only for the Euler-Bernoulli

pipe with the effects of shear deformation and rotary inertia neglected, and incorrect for the Timoshenko pipes that are

dependent on the slenderness ratios. For a fluid-conveying pipe with the pulsating flow velocity )cos1()( 0 tVtV e

with 0V denoting the average velocity, Chen (1971) used the Hsu’s (1963) method to study the influence of pulsating

parameter  and pulsating frequency e on the area of the instability region. Later, Paidoussis and Issid (1974) plotted the

Argand diagrams to determine the critical flow velocity crV of the fluid-conveying pipe. From the existing literature

(Paidoussis and Sundararajan, 1975; Paidoussis and Issid, 1976; Paidoussisand Laithier, 1976; Noah and Hopkins, 1980;

Chen and Fan, 1987; Aldraihem, 2007; Yu et al., 2014; Wu et al., 2015), one sees that the problems studied in most existing

works have something to do with the stability curves, Argand diagrams or area of instability region of the fluid-conveying

pipes. It is also seen that most of the fluid-conveying pipes are single-span, and only a few of them are multi-span

(Wu and Shih, 2001; Wu et al., 2015). Furthermore, most of the problems are solved with the classical analytical methods,

and only a few of them are solved with the finite element method (FEM) (Kohli and Nakra, 1984; To and Healy, 1986;

Chen and Fan, 1987; Sreejith et al., 2004; Aldraihem, 2007; Wu et al., 2015; Arguelles and Casanova, 2015).

It is similar to the railways (Wu and Shih, 2000a, 2000b) or ocean structures (Wu and Chang, 1988; Wu and Chen,

2010) that, for a fluid-conveying pipe imbedded in the soil, the interaction between pipe and soil may be modeled by the

uniformly distributed springs with stiffness fk (Lottati and Kornecki, 1986; Djondjorov et al., 2001; Ryu et al., 2004).

Since the value of fk is dependent on the property of soil (Richart et al., 1970) and must be determined by experiments, in

this paper, it is provided by the company building the S-pipe. The last pipe is composed of five segments, including two

curved (or arc) pipe segments and three straight ones, use of pure curved pipe theory (Chen, 1972, 1973) or pure curved

beam theory (Wu and Chiang, 2003, 2004) for solving the dynamic problem of this S-pipe is very difficulty, thus, it is
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solved with the conventional FEM (Kohli and Nakra, 1984; Przemieniecki, 1985; To and Healy, 1986; Chen and Fan, 1987;

Sreejith et al., 2004; Aldraihem, 2007; Wu et al., 2015; Arguelles and Casanova, 2015) in this paper. Two types of flow

velocity are studied: constant velocity 0V and pulsating velocity )(tV )cos1(0 tV e . For constant velocity 0V , the

purpose is to study the “quasi-static” deflections of some points on the S-pipe due to actions of the constant impulses at the

inlet and outlet as well as the constant centrifugal forces at the two curved parts. For pulsating velocity, the purpose is to

study the dynamic responses of the above-mentioned points on the pipe. Numerical results reveal that the safety of the S-

pipe may be questionable if it is subjected to pulsating flow and the original conception (with the S-pipe replaced by the

siphon) should be safer, more efficient and more practical.

SKETCH OF THE S-PIPE

A sketch of the S-pipe is shown in Figure 1. It is a double-shell pipe with an inner diameter (of the inner shell)

10i d m and outer diameter (of the outer shell) 66.11o d m. The thickness of the inner shell is 035.0in t m and that of

the outer shell is 032.0out t m. The entire pipe is composed of three straight pipe segments and two curved ones. For the

last two curved (arc) segments, the radii of curvatures are 201 R m and 302 R m with subtended angles o
1 40 and

o
2 40 , respectively. In Figure 1, along the center line of the pipe, the arc denoted by BCD is the 1st curved pipe

segment with B and D denoting its left and right ends, respectively, and C denoting its middle; similarly, the arc denoted by

EFG is the 2nd curved pipe segment with E and G denoting its left and right ends, respectively, and F denoting its middle.

Among the three straight pipe segments, two of them are at the left inlet denoted by AB and right outlet denoted by GH ,

respectively, the third one is DE with its left end D connecting with the 1st curved pipe segment and its right end E is

connecting with the 2nd curved pipe segment. It is noted that the straight pipe segment DE is tangent to the two curved

pipe segments at D and E, respectively. Furthermore, the horizontal distance between left inlet and right outlet is about

11.56xL m and the vertical one is about 20yL m, and the corresponding elevations are: EL175m at the inlet and

EL195m at the outlet. Since the maximum elevation of the free water surface of Tsen-Weng reservoir is EL230m,

the maximum elevation head for the flowing water at the outlet of S-pipe is 35195230max h m. Therefore,

the variation of average flow velocity V for the S-pipe is shown in Table 1, where 8.9g m/s is the gravity acceleration

and h is the water depth (draft) at the center of the pipe outlet.

Table 1: Influence of Draft h at Pipe Outlet on the Average Flowing Velocity V in the S-Pipe

Draft at Pipe Outlet, h (m) 4 5 9 10 16 20 25 30 35

ghV 2
m/s 8.85 9.90 13.28 14.00 17.71 19.80 22.14 24.25 26.19
km/h 31.87 35.64 47.81 50.40 63.75 71.27 79.68 87.29 94.28
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Figure 1: The Double-Shell S-Pipe with Inner Diameter (of the Inner Shell) 10i d m and Outer Diameter

(of the Outer Shell) 66.11o d m, and Thickness of the Inner Shell 035.0in t m and that of the

Outer Shell 032.0out t m. It is Composed of three Straight Pipe Segments and Two Curved

Ones. The Outlet of the Pipe is Connected with an 1.2 km Tunnel Passing through a Mountain

FREE VIBRATION ANALYSIS BY FINITE ELEMENT METHOD (FEM)

In this paper, the vibration analysis of the S-pipe is conducted by using the finite element method (FEM).

Some key points concerned are introduced as follows.

MATHEMATICAL MODEL

The mathematical model of the S-pipe studied in this paper is shown in Figure 2, in which, the entire pipe is

considered as a free-clamped (F-C) curved beam rested on the elastic foundation with fk denoting the

“uniform-distributed” stiffness between the pipe and the soil.

Figure 2: The S-Pipe is Modeled by a Free-Clamped (F-C) Curved Beam Rested on the Elastic Foundation
with fk Denoting the “Uniform-Distributed” Stiffness between the Pipe and the Soil

FINITE ELEMENT MODEL

According to the sketch of the S-pipe shown in Figure 1 and the mathematical model shown in Figure 2, a finite

element model composed of 66 two-node pipe elements and 67 nodes is established as shown in Figure 3. From last figure

one sees that the entire pipe is divided into 5 segments, among which, the 1st segment ( AB ), 3rd segment ( DE ) and 5th
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segment ( GH ) are the straight pipes to be subdivided into 5, 16 and 9 pipe elements (i.e., 51, en , 163, en and 95, en ),

respectively; while the 2nd segment ( BCD ) and 4th segment ( EFG ) are the curved pipes with subtended angles

o4021   to be subdivided into 16 and 20 pipe elements (i.e., 162, en and 204, en ), respectively. For convenience,

the last two curved pipes are called the 1st and 2nd curved pipe segments in this paper and their radii of curvatures are

denoted by 201 R m and 302 R m, respectively. It is noted that, in Figure 3, the unit of lengths is meter (m).

Figure 3: The Finite Elements along the Center Line of the S-Pipe: the Entire Pipe is Composed of Five
Pipe Segments Including three Straight Ones ( AB , DE and GH ) and Two Curved Ones ( BCD

and EFG ), and the Total Numbers of Pipe Elements are 5, ien , 16, 16, 20 and 9, Respectively

ELEMENTAL PROPERTY MATRICES

Each pipe element composed of the entire S-pipe shown in Figure 3 is to take the form shown in Figure 4. It is a

two-node clamped-clamped (C-C) beam element with each node having three displacements, 31 uu  and 64 uu  .

Among which, 1u and 4u are the longitudinal (or axial) displacements in the x-direction, 2u and 5u are the transverse

(lateral) displacements in the y-direction, and 3u and 6u are the angular displacements (or rotational angles) about the

z-axis, respectively. The mass matrix [m]e, damping matrix [c]e and stiffness matrix [k]e of such a pipe element are given by

(Kohli and Nakra, 1984; Przemieniecki, 1985; To and Healy, 1986; Wu et al., 2015)

Figure 4: The Node Displacements of a Two-Node C-C Pipe Element with Six DOFs
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In Equation (3), the symbols eBk ][ , eFk ][ and eGk ][ are the bending, elastic-foundation and geometric element

stiffness matrices given by














































EIEIEIEI

EIEIEI

EAEA

EIEI

EI

EA

k eB

460260

1206120

00

460

Sym120

][

22

323

2

3

(4)































22

2

42203130

156013540

0000

4220

Sym1560

0

420
][





f
eF

k
k

(5)







































22

2

43030

3603360

300030

430

Sym360

30

30
][









P
k eG (6)

where

2VmApPP fffp  (7)

In the right side of Equation (7), pP is the axial load applied on the pipe wall, ff Ap is the fluid pressure on the

pipe section and 2Vm f is the centrifugal force on the pipe section due to structure vibrations. Where the compressions are

positive (+) and tensions are negative (-). Furthermore, the centrifugal forces induced by the 1st and 2nd curved pipe

segments ( BCD and EFG ) are considered as the external loads on the entire S-pipe and are not included in Equation (7),

because each pipe element shown in Figure 3 is replaced by the straight one. The definitions for the other symbols

appearing in Eqs. (1)-(7) are as follows: pm pipe mass per unit length ( including pipe material and cement in the ballast

tanks), fm fluid mass per unit pipe length in the pipe, addm added mass (of water) per unit length surrounding the
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pipe, V 0V = average flowing velocity of fluid,  length of each pipe element, E Young modulus of pipe material,

A cross-sectional area of pipe wall, fA cross-sectional area of fluid column in the pipe, I moment of inertia of

cross-sectional area A, fk stiffness of soil for per unit pipe length, and pP axial pressure on the pipe wall.

TRANSFORMATION MATRIX

From the finite element model shown in Figure 3 one sees that, besides the first five pipe elements ( 51, en ) near

the inlet and the final 9 ones ( 95, en ) near the outlet, the local coordinate systems oxy for all the other pipe elements are

not parallel to the global coordinate system yxo for the entire pipe such as shown in Figure 5. Thus, the property matrices

of most pipe elements must be transformed into the corresponding ones in terms of the global coordinate system before

they are assembled to give the overall ones. For this reason, the transformation matrix ][ is introduced as follows

(Wu, 2013)
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where

xcos , ysin (9a,b)

12 xxx  , 12 yyy  , 22 )()( yx  (10a,b,c)

In the above equations,  is the angle between the positive local x-axis and the positive global x -axis,

while ( 11 , yx ) and ( 22 , yx ) are the global coordinates of the 1st node  and 2nd node  of the pipe element, respectively.

It is evident that the symbol  given by Equation (10c) denotes the length of the pipe element.

Figure 5: The Node Displacements of a C-C Pipe Element with Respect to the Local
Oxy Coordinate System, iu ( 61i ), and the Corresponding Ones with

Respect to the Global yxo Coordinate System, iu ( 61i )

Now, the element property matrices ea][ with respect to the local oxy coordinate system given by Eqs. (1)-(6) can

be transformed into the corresponding ones ea ][ respect to the global yxo coordinate system by using
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][][][][  e
T

e aa  (11)

where ea][ = em][ , ec][ , eBk ][ , eFk ][ or eGk ][ , while ea ][ = em][ , ec ][ , eBk ][ , eFk ][ or eGk ][ .

DETERMINATION OF UN-DAMPED NATURAL FREQUENCIES AND MODE SHAPES

The equations of motion for the entire S-pipe take the form

}{}]{[}]{[}]{[ Fukucum   (12a)

where ][m , ][c and ][k are the overall mass, damping and stiffness matrices of the entire pipe system and }{F

is the overall external loading vector. For free vibrations, one has 0}{ F , thus, Equation (12a) becomes

0}]{[}]{[}]{[  ukucum  (12b)

If the damping effect is neglected, then 0][ c , and Equation (12b) reduces to

0}]{[}]{[  ukum  (12c)

Which is the standard equation of motion for an un-damped free vibration system and can be solved for the

natural frequencies and mode shapes using the generalized Jacobi method (Bathe, 1982; Wu, 2013).

DETERMINATION OF DAMPED NATURAL FREQUENCIES AND MODE SHAPES

Equation (12b) is the equation of motion for a damped free-vibration system. Due to the existence of damping

term, application of the existing computer codes (Garbow, 1977) requires that Equation (12b) must be transformed into the

form below (Meirovitch, 1967; Wu et al., 2015)
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With each specified flowing velocity V , the rth eigenvalues r and the associated rth eigenvectors ][ r of

Equation (13) take the pairs of conjugate complex forms
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In the above equations, the subscripts, R and I, refer to “real” and “imaginary” parts of the complex numbers,

respectively, and 1j . Furthermore, the “imaginary” part of r , Ir , , denotes the rth natural frequency and the

corresponding “real” part of }{ r , }{ ,Rr , denotes the rth mode shape. Numerical results reveal that }{}{ ,, IrRr   ,

this may be due to IrRr ,,   .
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It is similar to the C-F pipe with free end at downstream (Chen and Fan, 1987; Aldraihem, 2007; Wu et al., 2015)

that, for the F-C pipe studied in this paper, the following momentum transport at the upstream free end must be considered:

0
2 |  xyfyf uVmuVm  .

FORCED VIBRATION ANALYSIS BY FINITE ELEMENT METHOD

In this section, the forced dynamic responses of the free-clamped (F-C) S-pipe subjected to the flow-induced

impulsive forces at inlet and outlet and the centrifugal forces (CFs) at the 1st and 2nd curved pipe segments are studied.

The centrifugal force per unit pipe length induced by the water flowing through the curved pipe segments is given by

RVAF wwc
2 (16)

where fw   is the mass density of water, fw AA  is the cross-section area of water column inside the pipe,

V is average flow velocity and R is the radius of curvature of the curved pipe segment.

If the symbols 1cn and 2cn denote the total numbers of arc elements composing of the 1st and 2nd curved pipe segments,

respectively, while 1 and 2 denote the subtended angles for each of the arc elements, then

oo
111 5.21640  cn , o

222 22040  o
cn (17a,b)

Where o
1 40 and o

2 40 are the subtended angles for the first and second curved pipe segments,

respectively, while 162,1  ec nn and 204,2  ec nn as one may see from Figure 3.

If the node numbering for the 1st node in the 1st curved pipe segment is denoted by Lcn ,1 , then the angle i,1

between the centrifugal force icF 1 and the negative y -axis is determined by (cf. Figure 6)

1,1,1 )(   Lcii nn (18)

In Figure 6, yxo is the global coordinate system with origin o at the inlet of the S-pipe.

Similarly to Equation (18), if the node numbering for the 1st node in the 2nd curved pipe segment is denoted by Lcn ,2 ,

then the angle i,2 between the centrifugal force icF 2 and the positive y -axis is determined by

])[(40])[( 2,2
o

2,22,2   LciLcii nnnn (19)
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Figure 6: The Centrifugal Force icF 1 at ith Node in the 1st Curved Pipe Segment with Angle i,1 with the

y Axis and its Components, xicF ,1 and yicF ,1 , in x and y Directions, Respectively, and the

Corresponding Ones at ith Node in the 2nd Curved Pipe Segment with Angle i,2 with the y

Axis, icF 2 , xicF ,2 and yicF ,2 . In Addition, 2
LLLL VAF  and 2

RRRR VAF  are the Impulsive

Forces of the Flowing Fluid on the Left Inlet and Right Outlet of the Pipe, Respectively

Based on the angle i,1 between each centrifugal force icF 1 and negative y -axis given by Equation (18) for the 1st

curved pipe segment and the corresponding one i,2 for the 2nd curved pipe segment, one may obtain the following

centrifugal force components in x -direction and those in y -direction (cf. Figure 6)

iicxic FF ,11,1 sin , iicyic FF ,11,1 cos (for )( to 1,1,1 cLcLc nnni  ) (20a,b)

iicxic FF ,22,2 sin , iicyic FF ,22,2 cos (for )( to 2,2,2 cLcLc nnni  ) (21a,b)

Since the centrifugal force per unit length, cF  , is given by Equation (16), the distributed centrifugal node forces

appearing in Eqs. (20a,b) and (21a,b) are determined by

1
2

111   VARFF wwcic (for )1(  to)1( 1,1,1  cLcLc nnni ) (22a)

2
2

222   VARFF wwcic (for )1(  to)1( 2,2,2  cLcLc nnni ) (23a)

Eqs. (22a) and (23a) give the intermediate-node forces, and those at the two ends of the 1st and 2nd curved pipe

segments are given by

1
2

2
1

1   VAF wwic (for 1,1,1 or cLcLc nnni  ) (22b)

2
2

2
1

2   VAF wwic (for 2,2,2 or cLcLc nnni  ) (23b)

It is noted that, in Eqs. (22a,b) and (23a,b), the units of 1 and 2 are “radian”.

RAYLEIGH DAMPING MATRIX

Since the damping matrix ][c appearing in Equation (12a) contains the effect of Coriolis force only, a Rayleigh

damping matrix to include the overall damping effect of the entire S-pipe is introduced here, which is to take the form

(Bathe, 1982; Wu, 2013)
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][][]ˆ[ kbmac  (24a)

where ][m and ][k are the overall mass matrix and stiffness matrix, respectively, while a and b are constants

determined by

22

)(2

ij

ijjijia







 ,

22

)(2

ij

iijjb







 (24b,c)

In the above two expressions, i and j are the damping ratios corresponding to the two natural frequencies i

and j , respectively, for ji   . In such a case, Equation (12a) becomes

}{}]{[}]){ˆ[]([}]{[ Fukuccum   (25)

Even if the effect of ][c due to Coriolis force is considered, from the subsequent studies, one may find that the

forced vibration responses will become very large if one sets 0]ˆ[ c , because of neglecting the structural damping (i.e.,

0 ji  ).

NUMERICAL RESULTS AND DISCUSSIONS

In the finite element analysis, one of the tedious works is the preparation of input data. Thus, in this section,

the determinations of global coordinates for the 67 nodes of the entire S-pipe and the other associated given data are

introduced first. Next, the free and forced vibration-analysis results are followed.

As shown in Figure 3, the entire finite element model along the center line of the S-pipe is composed of five pipe

segments including three straight ones ( AB , DE and GH ) and two curved ones ( BCD and EFG ), and the total numbers

of pipe elements are 5, ien , 16, 16, 20 and 9, respectively. Where the lengths of elements in each pipe segment are equal

to each other (but the length of each element in one pipe segment is different from that in the other pipe segment).

Based on the above statements and the following information regarding the global coordinates of some key

nodes, )0,0(A , )0,5(B , )679.4,856.17(D , )981.12,716.27(E , )20,47(G and )20,56(H , one can obtain the global

coordinates of all nodes by using computer.

The other associated given data are as follows: inner diameter of the double-shell pipe: m10id (or radius

0.5ir m); outer diameter of the double-shell pipe: m66.110 d (or radius 83.5or m); thickness of inner shell:

m035.0in t ; thickness of outer shell: m032.0out t ; Young’s modulus:  Gpa200E 211 mN100.2  ;

shear modulus: 211 mN10793.0Gpa3.79 G ; mass density of pipe shells: 3mkg7850p ; mass density of water:

3mkg1000w ; stiffness of soil: 106.203 6fk 2mN ; total pipe length: m795.61L ; total pipe mass:

kg1052289.20 6m (including mass of cement in ballast tanks); pipe mass per unit length:

mkg103321125.0 6 Lmm (Theoretical value: mkg101783818.0mkg18.17838 5 wallp Am  );

pipe’s added mass per unit length:  owa Am  mkg273.106779)4( 2 ow d . The polar moments of inertia for the

cross-sectional area of the outer and inner shells are 44
1,

4
2,32,, m51466.39][  oooutpox DDII  and
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44
1,

4
2,32,, m77892.27][(  iiinpix DDII  . Thus, the moment of inertia of the entire double-shell pipe about y- or z- axis

is 4
,,2

1 m64679.33)(  ixoxzy IIII .

In the foregoing expressions, the values of soil stiffness fk and total pipe mass m are obtained from

measurements and provided by the company building the S-pipe.

FREE VIBRATION ANALYSIS

In this subsection, the influence of mass density fw   and flowing velocity V of fluid on the natural

frequencies and the associated mode shapes is studied.

Influence of Mass Density of Fluid on Free Vibration Characteristics

From Table 1 one sees that if the draft 30h m (at the outlet of the S-pipe) is selected to estimate the maximum

flowing velocity of fluid in the pipe, then one has 25.24V m/s. In such condition, the lowest five natural frequencies

r (r/s) of the free-clamped (F-C) pipe are listed in Table 2 with the fluid mass densities w to be 1000 and 2000 3mkg ,

respectively. For the case of damping effect due to Coriolis force to be considered, the eigenvalues of the S-pipe are the

complex numbers of the form IrRrr j ,,   , thus, in addition to the imaginary parts Ir , corresponding to the

conventional un-damped natural frequencies r , the real parts Rr , are also listed in the parentheses of Table 2,

because they influence the dynamic stability of a fluid-conveying pipe. From Table 2, one sees that:

 No matter the fluid mass density w = 1000 or 2000 3mkg , the damped natural frequency Ir , is less than the

corresponding un-damped one r ( 51r ), except the 2nd and 5th ones due to the negative damping effect of

Coriolis force. However, the influence of Coriolis force is negligible. Since the real parts of all eigenvalues, Rr , ,

listed in the parentheses of Table 2 are negative, the dynamic instability due to Coriolis force will not occur for the

present S-pipe.

 With w = 1000 3mkg , the corresponding lowest five mode shapes are shown in Figure 7(a) for the un-damped

pipe and in Figure 7(b) for the damped pipe. Because the un-damped natural frequencies r ( 51r ) are very

close to the corresponding damped ones Ir , as shown in Table 2, the un-damped mode shapes shown in Figure

7(a) are very close to the corresponding damped ones shown in Figure 7(b), except the 5th mode shapes.
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Table 2: The Lowest Five Un-Damped Natural Frequencies r and Damped Ones

Ir , of the S-Pipe Conveying Fluid with Velocities 25.24V sm

Conditions Natural Frequencies, r or Ir , (rad/s)

Mass density of fluid ( 3mkg )
Damping effect
(Coriolis force)

1 or I,1

( R,1 )
2 or I,2

( R,2 )
3 or I,3

( R,3 )
4 or I,4

( R,4 )
5 or I,5

( R,5 )

1000w
Neglected
(un-damped)

18.7589 21.1909 31.3601 62.2232 71.9840

Considered
(damped)

18.7527
(-0.0891)

21.1931
(-0.0064)

31.3516
(-0.1447)

62.2177
(-0.1156)

71.9842
(-0.0006)

2000w

Neglected
(un-damped)

16.0995 18.1799 26.9137 53.3912 61.7632

Considered
(damped)

16.0872
(-0.1311)

18.1850
(-0.0095)

26.8989
(-0.2131)

53.3815
(-0.1702)

61.7637
(-0.0009)

Figure 7: The Lowest Five Mode Shapes of the S-Pipe Conveying Fluid with Velocity

25.24V sm and Mass Density 1000w 3mkg for the Cases of Coriolis
-Force (Damping) effect: (a) Neglected and (b) Considered

Influence of Flowing Velocity on Free Vibration Characteristics

The influence of flowing velocity V of fluid on the property matrices of a pipe element is to appear in Equation (2)

for the damping matrix due to Coriolis force and in Equation (7) for the centrifugal force associated with geometric

stiffness matrix given by Equation (6). In Table 3, the 3rd row lists the lowest five natural frequencies of the pipe for the

case of 0V . From Table 3 one sees that, for the cases of 3010 V m/s, the influence of flowing velocity on the lowest

five natural frequencies is small. For the “un-damped” natural frequencies r of the pipe, the row before the final one of

Table 3 indicates that 1 and 3 “increase” with the increase of flowing velocity V, and this trend is reverse for the 2 ,

4 and 5 . Furthermore, all the “damped” natural frequencies Ir , “decrease” with increasing the flowing velocity as

shown in the final row of Table 3. Since the real parts of all eigenvalues, Rr , , listed in the parentheses of Table 3, are

negative, the dynamic instability due to Coriolis force will not occur for the present S-pipe. This conclusion agrees with
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that obtained from Table 2.

Table 3: The Lowest Five Un-Damped Natural Frequencies r and Damped Ones Ir , of the S-Pipe Conveying

Fluid with Mass Density 1000w 3mkg and Velocities 0V , 10, 15, 20, 25 and 30 sm , Respectively

Conditions Natural Frequencies, r or Ir , (rad/s)

Flowing
Velocity,
V (m/s)

Damping effect
(Coriolis force)

1 or I,1

( R,1 )
2 or I,2

( R,2 )
3 or I,3

( R,3 )
4 or I,4

( R,4 )
5 or I,5

( R,5 )

0 ― 18.7554 21.1950 31.3551 62.2245 71.9893

10

Neglected
(un-damped)

18.7560 21.1943 31.3560 62.2243 71.9884

Considered
(damped)

18.7550
(-0.0367)

21.1947
(-0.0026)

31.3545
(-0.0596)

62.2233
(-0.0476)

71.9885
(-0.0003)

15

Neglected
(un-damped)

18.7568 21.1935 31.3570 62.2240 71.9873

Considered
(damped)

18.7544
(-0.0551)

21.1943
(-0.0039)

31.3538
(-0.0895)

62.2219
(-0.0715)

71.9874
(-0.0004)

20

Neglected
(un-damped)

18.7578 21.1922 31.3585 62.2236 71.9857

Considered
(damped)

18.7536
(-0.0734)

21.1937
(-0.0053)

31.3527
(-0.1194)

62.2199
(-0.0953)

71.9858
(-0.0005)

25

Neglected
(un-damped)

18.7591 21.1907 31.3604 62.2232 71.9837

Considered
(damped)

18.7525
(-0.0918)

21.1930
(-0.0066)

31.3514
(-0.1492)

62.2173
(-0.1191)

71.9838
(-0.0006)

30

Neglected
(un-damped)

18.7607 21.1887 31.3628 62.2226 71.9812

Considered
(damped)

18.7513
(-0.1102)

21.1921
(-0.0080)

31.3498
(-0.1790)

62.2141
(-0.1430)

71.9814
(-0.0008)

Trend of frequencies
Un-damped Increasing Decreasing Increasing Decreasing Decreasing
Damped Decreasing

FORCED VIBRATION ANALYSIS

The objective of this section is to study the dynamic responses of the S-pipe due to actions of the impulsive forces

and the centrifugal forces induced by the flowing fluid with velocity

)cos1()( 0 tVtV e (26)

For convenience, the following numerical values are used:

25.240 V m/s (or 30h m), 1500w 3mkg , 361e rad/s, 05.021   (27)

Time Histories of Displacements at Nodes 1 and 38

Based on the conditions given by Equation (27) with pulsating frequency 10e rad/s and pulsating parameter

0 , the time histories for the displacements of nodes 1 and 38 in the horizontal ( x ) direction, )(1 tu and )(112 tu ,

are shown in Figure 8(a), and the corresponding ones in the vertical ( y ) direction, )(2 tu and )(113 tu , are shown in Figure

8(b). It is seen that all curves become the horizontal lines after time 7t seconds due to the effect of pipe’s structural

damping. Since the pulsating parameter is 0 for Figure 8, the ordinates corresponding to the last horizontal lines are,
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respectively, called the “quasi-static deflections” ( x or y ) of the S-pipe at the specified nodes in the horizontal ( x ) or

vertical ( y ) directions due to actions of the “constant” fluid impulses at the inlet and outlet as well as the centrifugal forces

at the 1st and 2nd curved pipe segments. From Figure 8(a), one sees that 021.01  x m and 0049.038  x m. Similarly,

from Figure 8(b), one sees that 021.01  y m and 0035.038  y m. It is noted that all “quasi-static deflections”

are positive (either rightward or upward) except y1 (downward).

If all the foregoing conditions are kept unchanged except that the pulsating parameter of flowing velocity is

replaced by 2.0 (instead of 0 ), then the time histories of displacements at nodes 1 and 38 are shown in Figure 9(a)

for the horizontal ( x ) displacements, )(1 tu and )(112 tu , and in Figure 9(b) for the vertical ( y ) displacements, )(2 tu

and )(113 tu . It is under our expectation that all curves become those of harmonic motions with respect to their “quasi-

static” equilibrium positions (q-SEPs) after time 7t seconds, because the influences of all initial velocities have been

damped out.

Figure 8: For the Case of 0 , 10e Rad/s, 1500w 3mkg , 25.240 V m/s and 05.021   , the
time Histories of Displacements at Nodes 1 and 38: (a) Horizontal ( x ) Displacements,

)(1 tu and )(112 tu ; (b) Vertical ( y ) Displacements, )(2 tu and )(113 tu
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Figure 9 : All Legends are the Same as Figure 8 Except that 2.0 (Instead of 0 )

Frequency-Response Amplitude Curves for Nodes 1 and 38

For the conditions given by Equation (27), the lowest five un-damped natural frequencies of the S-pipe are:

17.2773, 19.5136, 28.8829, 57.3030 and 66.2902 rad/s, respectively. Based on the centrifugal forces (CFs) on the 1st and

2nd curved pipe segments along with the impulsive forces on the inlet and outlet of the pipe shown in Figure 6,

the frequency-response amplitude curves due to 2.0 and 4.0 are as follows:

For the case of 2.0 , the frequency-response amplitude curves for nodes 1 and 38 are shown in Figure 10(a)

for the horizontal ( x ) displacement amplitudes, max1 |)(| tu and max112 |)(| tu , and in Figure 10(b) for the vertical ( y )

displacement amplitudes, max2 |)(| tu and max113 |)(| tu . Among the four curves, the solid ones are for node 1 and the dashed

ones are for node 38. From Figure 10(a) one sees that each curve has a peak when the pulsating frequency e approaches

the first un-damped natural frequency 1 of the pipe (i.e., 2773.171̀ e rad/s), this is because the both horizontal

displacements are in the rightward (+ x ) direction. However, from Figure 10(b) one sees that the solid curve for the

vertical downward )( y displacements of node 1 has a peak at 2773.171̀ e rad/s, and the dashed curve for the

vertical upward )( y displacements of node 38 has a peak at 5136.192`  e rad/s. It is seen that either horizontal or

vertical displacement amplitudes, those of node 1 at the left free end of the pipe are much greater than the corresponding

ones at the intermediate node 38. In addition, the maximum vertical displacement amplitude at node 1,
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m125.0|)(| max2  tu shown in Figure 10(b) is much greater than the corresponding quasi-static deflection

m021.0|| 1  y shown in Figure 8(b) or 9(b). This result indicates that the S-pipe is safe under constant (quasi-static)

loads and may be questionable under pulsating (dynamic) loads, particularly because it is deeply under the free water

surface (with 35max h m).

Figure10: For the Case of 2.0 and the Conditions given by Equation (27), the Frequency-Response Amplitude
Curves for Nodes 1 and 38: (a) Horizontal ( x ) Displacement Amplitudes, max1 |)(| tu and

max112 |)(| tu ; (b) Vertical ( y ) Displacement Amplitudes, max2 |)(| tu and max113 |)(| tu

If all conditions for Figure 10 are kept unchanged except that 4.0 , then, the frequency-response amplitude

curves for nodes 1 and 38 are shown in Figure 11(a) and (b), respectively. It is seen that, either the horizontal or vertical

displacement amplitudes, the peak values shown in Figure 11(a) and (b) for the case of 4.0 are much greater than the

corresponding ones shown in Figure 10(a) and (b) for the case of 2.0 . This result is under our expectation,

because 0max 2.1|)(| VtV  if 2.0 , and 0max 4.1|)(| VtV  if 4.0 , so that the ratio between the exciting force

amplitudes for the last two cases is 2
0

2
02.04.0 )2.1()4.1(|)(||)(| VVtFtF   361.1 . From Figure 11(b), one obtains the

maximum vertical displacement amplitude at node 1, m227.0|)(| max2  tu , which is 1.816 times the corresponding one

m125.0|)(| max2  tu obtain from Figure 10(b) for the case of 0.2 and 10.81 times the quasi-static deflection

m021.0|| 1  y obtained from Figure 8(b) for the case of 0 . It is noted that 816.1m125.0m227.0  , this is greater

than the exciting force amplitude ratio 1.361, due to the dynamic magnification effect. Such a nonlinear raise of dynamic

response amplitudes of the S-pipe with the increase of pulsating parameter  may be the negative information for the

safety of the S-pipe after the operation.
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Figure 11: All Legends are the Same as Figure 10 Except that 4.0 (Instead of 2.0 )

CONCLUSIONS

Based on the foregoing numerical results and discussions, one obtains the following conclusions:

 For the actual S-pipe studied in this paper, the influence of water-surface elevation of the reservoir on its lowest

five natural frequencies is negligible, however, the variation of fluid mass density (due to sediments) influences its

free vibration characteristics to some degree.

 Because the damping effect due to Coriolis force is negligible, either the “quasi-static” or the “dynamic”

deflections of the actual S-pipe at its free end (inlet) will become very large if the structural damping effect in not

considered. In such a case, introducing the Rayleigh damping matrix in terms of damping ratios ( 1 and 2 ) of

the entire vibrating system will be much better than using the inner and outer damping coefficients ( ic and oc ) of

each components, because the determination of damping ratios is easier and more practical than that of damping

coefficients.

 For the S-pipe studied in this paper, the flowing velocity of fluid will induce a pair of impulsive forces at its inlet

and outlet, as well as a pair of centrifugal forces at its first and second curved pipe segments. The pair of

impulsive forces are equal to each other in magnitudes, opposite in directions and not collinear, thus, they produce

an unbalanced couple, and so do for the pair of centrifugal forces. For the fluid flow with “constant” velocity 0V ,

the quasi-static deflection at inlet (located at free end) is negligible, however, for the fluid flow with “pulsating”

velocity )cos1()( 0 tVtV e and the pulsating frequency e approaching the first natural frequency 1 of the

pipe, the maximum deflection at inlet may be more than ten times that of the quasi-static deflection (dependent on

the magnitude of pulsating parameter  ). In such situation, the safety of the S-pipe may be questionable.
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Particular attention should be paid to the liquefaction of soil contacting with the S-pipe, because this may be the

main reason leading to collapse of the S-pipe. It is evident that the general straight pipes do not have the

foregoing problems.

 For the S-pipe studied in this paper, attentions must be paid to the operations of the gate at the pipe outlet. It is

possible that one cannot open or close the gate due to its unusual size and the huge hydraulic pressure or

impulsive force on it.

 From the view point of safety, efficiency or practicality, the “siphon” shown in Figure A1 (in Appendix of this

paper) should be better than the actual S-pipe shown in Figure 1.
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APPENDIX: CLEANING DEPOSIT OF TSEN-WENG RESERVOIR BY USING SIPHON

For leaning the deposit of Tsen-Weng reservoir, instead of the conventional sluice gate near free water surface,

the siphon with its inlet near reservoir bottom (Figure A1) will be safer, more efficient and more practical.

Figure A1: The Original Conception for Cleaning Deposit of Tsen-Weng

Reservoir by Using Siphon Theory (C.V. = Control Valve)


